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ANALYSIS AND MODIFICATON OF NEWTON'S METHOD 
FOR ALGEBRAIC RICCATI EQUATIONS 

CHUN-HUA GUO AND PETER LANCASTER 

ABSTRACT. When Newton's method is applied to find the maximal symmetric 
solution of an algebraic Riccati equation, convergence can be guaranteed un- 
der moderate conditions. In particular, the initial guess need not be close to 
the solution. The convergence is quadratic if the Fr6chet derivative is invert- 
ible at the solution. In this paper we examine the behaviour of the Newton 
iteration when the derivative is not invertible at the solution. We find that 
a simple modification can improve the performance of the Newton iteration 
dramatically. 

1. INTRODUCTION AND REVIEW 

Algebraic Riccati equations occur in many important applications [14], [16]. In 
this paper we consider algebraic Riccati equations of the form 

(1.1) 74(X) = XDX -XA -ATS _ C = O, 

where A,D,C E RIxn, and DT = D, CT = C. Let S be the set of symmetric 
matrices in RW'X. For any matrix norm (not Djecessarily multiplicative) S is a 
Banach space, and 1Z is a mapping from S into itself. The first Frechet derivative 
of 1Z at a matrix X is a linear map TZh S -- S given by 

(1.2) )Z>(S) -(S(A - DX) + (A - DX)TS). 

Also the second derivative at X, 74x: S x S -> S, is given by 

(1.3) R'X (S1i S2) = Si DS2 + S2DSi. 

The Newton method for the solution of (1.1) is 

(1.4) Xi+, xi X- (R1xXiR (Xi)1 i = 0, 1, . .. 

given that the maps TZh' are all invertible. In view of (1.2), the iteration (1.4) is 
equivalent to 

(1.5) X?1 (A- DXi) + (A- DXi)TX?+l = -XiDXi - C, i =0, 1... 

It is readily seen that all the matrices Xi are symmetric if Xo is so. 
For A, B EE Rnxn , the pair (A, B) is said to be stabilizable if there is a K E Rnxn 

such that A - BK is stable, i.e., all its eigenvalues are in the open left half-plane. 
The order relation on the set of symmetric matrices is the usual one: X > Y if 
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X - Y is positive semidefinite. A symmetric solution X+ of (1.1) is called maximal 
if X+ > X for every symmetric solution X. The following result is the real version 
of Theorem 9.1.1 in [14]. See also [4] and [8]. 

Theorem 1.1. Assume that D > 0, CT = C, (A,D) is stabilizable, and there 
exists a symmetric solution of the inequality 14(X) < 0. Then there exists a maximal 
symmetric solution X+ of 14(X) 0. Moreover, all the eigenvalues of A - DX+ 
are in the closed left half-plane. 

A symmetric solution X of (1.1) is called stabilizing (resp. almost stabilizing) if 
all the eigenvalues of A - DX are in the open (resp. closed) left half-plane. Such 
solutions play important roles in applications. Theorem 1.1 tells us that, under the 
given conditions, the maximal solution is at least almost stabilizing. In fact (see 
[20] or [14, Theorem 7.9.3]), X+ is the only symmetric solution that can be almost 
stabilizing. For this reason, the maximal solution is of particular interest. 

Theorem 1.2. Under the same conditions as in Theorem 1.1, starting with any 
symmetric matrix XO for which A - DXo is stable, the recursion (1.5) determines a 
sequence of symmetric matrices {XJ},1I for which A-DXi is stable for i = 1, 2,... 
XI > X2 > , and limi,0 Xi = X+. 

The maximal solution can thus be found by the Newton iteration without previ- 
ous information about the solution. The proof of the above theorem can be found 
in [14, p. 232]. See also [4], [8] and [13]. There is no doubt about the existence 
of the matrix X0. Since (A, D) is stabilizable and D > 0, we can find an Xo > 0 
such that A - DXo is stable. This is the real version of Lemma 4.5.4 in [14]. More- 
over, a stabilizing symmetric matrix Xo can be produced by automatic stabilizing 
procedures such as the one in [19], although the matrix Xo so obtained may be far 
away from the solution X+. We note that Xo > X1 is generally not true. In fact, 
the first Newton iteration is capable of making a big adjustment to the initial guess 
(see [2], for example). When X+ > 0, we necessarily have X1 > 0. But X0 can be 
indefinite. 

If X is an almost stabilizing solution of (1.1) (in the sense that u(A - DX) is 
in the closed left half-plane), then 74x is invertible if and only if X is a stabilizing 
solution. This can be seen from the following classical result. 

Theorem 1.3 (cf. [14, p. 100]). For given matrices A E Rxn B E R n,n and 
F E Rn,x the Sylvester equation SA - BS = F has a unique solution (necessarily 
real) if and only if A and B have no eigenvalues in common. 

It is readily seen that 74x, as a function of X, is Lipschitz continuous on S. 
Thus the well known locally quadratic convergence of Newton's method [10], [17], 
in combination with Theorem 1.2, yields the following result. 

Theorem 1.4. If A-DX+ is stable in Theorem 1.1, then for the sequence {Xi} 1?0 
there is a constant c > 0 such that, for i = 0, 1,-, IIXi+I -X+ I < ciiXi-XX+ 12, 
where 1111 is any given matrix norm. 

We note that, because o(A - DX+) is in the open left half-plane, A - DXo is 
necessarily stable if X0 is close enough to X+. A direct algebraic proof of the above 
theorem can be found in [14, p. 237]. 
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In [2], an exact line search method is introduced which improves Newton's 
method for the numerical solution of the Riccati equation in several aspects. How- 
ever, the theory established there does not cover the general situation described in 
Theorem 1.1, even when A - DX+ has no eigenvalues on the imaginary axis. 

When A - DX+ has eigenvalues on the imaginary axis, 74x+ is not invertible 
and the convergence behaviour of the Newton iteration is more complicated. In this 
paper we examine the behaviour of the Newton iteration for this case. The results 
we obtain suggest that a simple modification step can be introduced to improve 
the performance of the Newton iteration dramatically in many cases. Numerical 
results are also given to show the effectiveness of the modification. 

The literature on Newton's method in the case of a non-invertible Jacobian at 
the solution (7x in our case) is considerable. Typically, one considers a smooth 
map F from a Banach space E into itself (see [5], [6], [7], [11], [12], [18]). Standard 
assumptions are that there is an x* E E such that F(x*) = 0 and the Fnechet 
derivative at x*, F'(x*), has a null space N of dimension d with 0 < d < oc. 
Also, it is assumed that F'(x*) has closed range M and that there is a direct sum 
decomposition E = N @ M. Then we may define PN to be the projection onto N 
parallel to M and let PN,I I - PN. Assume that there is a q0 E N such that the 
map B on N given by B PNF//(x*)(q$, ,) is invertible. Linear convergence with 
common ratio 1 is then predicted for Newton's method with an appropriate initial 
guess. The investigations of this paper began with Example 9.2.1 of [14] concerning 
Riccati equations in which this same constant appears. 

These analyses establish local convergence results of course (in contrast with 
Theorem 1.2). Our main result will be an application of the following theorem. 

Theorem 1.5 (cf. [11, Theorem 1.1]). Let E NeM, let $o be chosen so that B 
is invertible, and let N = span {q00} I N1 for some subspace N1. Write x - x* 
and let 

(1.6) 
W(p 0,7) = 0X I O < ||X|| < P, |IPMIXI1 < O?PNIS1, JJ(PN -PO)>I1 <?ri PNXI1}1 

where Po is the projection onto span {q00 } parallel to M @ N1. If xo E W(po, 0I, rio) 
for po, 00, ro sufficiently small, then the Newton sequence {xi} is well defined and 
11F'(xi)-11 < cllx 11 -1 for all i > 1 and some constant c > 0. Moreover, 

lim = lim -pAri = 0 

Notice that the region W(p, 0, rq) in which x0 is required to lie is close to x*, N, 
and q0 in the sense determined by the p, 0,?) inequalities, respectively. 

2. FURTHER ANALYSIS OF NEWTON'S METHOD 

APPLIED TO THE RICCATI EQUATION 

We now go back to the discussion of algebraic Riccati equations and assume 
throughout that the conditions of Theorem 1.1 are satisfied. Let X+ be the maximal 
solution of (1.1) with 74x not invertible. Let JVK= Ker ZR', M = Im)Z>. We 
have the following characterization of the direct sum condition. 

Theorem 2.1. S = JV @ M if and only if all elementary divisors of A - DX+ 
corresponding to the eigenvalues on the imaginary axis are linear. 
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Proof. Let J be the real Jordan canonical form for A-DX+ with P-1(A-DX+)P 
J and a real matrix P. We find that K E Ker 7x if and only if K = p-TQp-1 

for some Q E S satisfying QJ + JTQ = 0. Also W E Im)ZR+ if and only if 
W = P-TRP-1 with R - VJ + JTV for some V E S. Therefore, we may assume 
without loss of generality that A - DX+ is in real Jordan canonical form. 

If all elementary divisors of A -. DX+ corresponding to the eigenvalues on the 
imaginary axis are linear, we gather the Jordan blocks of A-DX+ in several groups: 

A -DX+ = diag (Gl, G2,.. ,GP- 1,GP). 

Here G1 = 0, GP consists of real Jordan blocks associated with eigenvalues in the 
open left half-plane, and for i = 2,... ,p - 1, 

Gi = diag(( -ai ( -ai )) 

where the ai's are distinct positive numbers. Using block matrix multiplications 
and applying Theorem 1.3 repeatedly, we can show that S = JV @ M. 

If A - DX+ has nonlinear elementary divisors corresponding to eigenvalues on 
the imaginary axis, we can arrange the Jordan blocks so that the first Jordan block 
J1 has one of the following two forms: 

. 1 
(1) 

(2) Jl , B B= ( O) a a: O. 

For the first case, diag (O, .. ., 0, 1, 0, ... , 0) E KnM, where the element 1 appears 
at the same position as the last diagonal element of J1. For the second case, 
diag (O, .. ., 0, 1, 0,.. ., 0) E KV n M, where the 2 x 2 identity matrix I appears at 
the same position as the last diagonal block of J1. Therefore, S 7& JV 3 M. O 

When S = JV @ M, we let Par denote the projection onto JK parallel to M and 
let PM = I - P. For the algebraic Riccati equation, we start the Newton iteration 
with a symmetric matrix Xo for which A - DXo is stable. Although the Newton 
sequence is well-defined and converges to X+, we do not know whether the iterates 
Xi will finally fall into a special region of the form (1.6). Therefore Theorem 1.5 
cannot be applied directly. Instead, we have the following result. 

Theorem 2.2. For any fixed 0 > 0, let 

Q = {i 11PM(Xi-XX+) | > 0O1PA(Xi-X+)|}1 

Then there exist an integer io and a constant c > 0 such that iXi -X+11 < 
C lX_- _X+- 2 for all i in Q for which i > io. 
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Proof. Let Xi = Xi - X+. Using Taylor's Theorem with (1.3) and the fact that 

RX+ (PArXi) = , 

(2. 1) )Z(Xi) =)4(X+) +)Z?X+ (Xi) ?2 - + (Xi, Xi) =Z+ (PMXi) + XiDXi. 

Since ZX+lM M -> M is invertible, Z>X+ (PM Xi) > c1 PMXij for some con- 
stant c1 > 0. For i E Q, we have lIXi|I < IPMXiII + IIPAKXi I < (0-1 + 1) IlPMXill 
Thus by (2.1), 

(2.2) )IZ(Xi)I > C1IIPMXiI -IC2IIki 2 > (Cl(O 1 ? 1)1C21i- ilXl) I-1 

On the other hand, we have by (1.5) 

X(A - DXi_1) + (A - DXi-,)TX, =-Xi_DXi_- C, 

and obviously, 

X+(A - DX+) + (A - DX+)TX+ -X+DX+ - C. 

By subtraction, we obtain after some manipulations 

Xi(A - DX?,-) + (A - DX_ l)TX= i 

Writing X+ = Xi1 - Xi1 in (2.1) and using the last equation it is found that 

Z (Xi) -i((A - DXi 1) + DXi - 1) 

-((A - DXi_1) + DXi_) TX ? XiDXi 

= Xi-1 i- -XiDXi1 -1-Xi 1 DXi ? Xi DXi- 

Since II-II is equivalent to a multiplicative matrix norm on RW ,X we have 

(2.3) )ZR(Xi)ll < c3 11k112 + C42IIiIIII-i- + Cs Ii- 112. 

In view of (2.2) and the fact that Xi 7/ X+ for any i, we have 

Ci(0- ? 1)-i - c2 < C? I3k X1 + C4 1X1-i_1 + c51X1-i-j1 12/111. 

Since Xi -> 0 by Theorem 1.2, we can find an io such that IIXiII < c IXI_1112 for all 
i> io- E 

Corollary 2.3. Assume that, for given 0 > O, I I PM (Xi-X?+) I I > 0 PAr (Xi-X+) I 
for all i large enough. Then Xi -- X+ quadratically. 

The above result is somewhat surprising, since it is generally believed that linear 
convergence is the best we can expect when the derivative at the solution is not 
invertible (see [5], [7] and [12]). We cannot rejoice in the possibility of quadratic 
convergence, however, since the condition in the corollary is not easily satisfied. 
Nevertheless, we can conclude that, when the convergence is not quadratic, the 
error will generally be dominated by its A/-component. This will be the basis for a 
numerical strategy proposed in the next section. Meanwhile, the following theorem 
shows what happens in the generic case when convergence is not quadratic. 

Theorem 2.4. Assume S =- K M. If the convergence of the Newton sequence 
{Xi} is not quadratic, then II(7RZ)-'II < clXi - X+1-1 for all i > 1 and some 
constant c > 0. Moreover, 

lmIIgXi+1 X+ 11 I1=z i lMlp (x i X+) liII= lim lim P X-X)_0. 
i-+oo Xi - X? 1 2' i_0OO IIpAg(X - X?) 112 
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The proof of this theorem is an application of Theorem 1.5 and follows readily 
from the next lemma. The map B appearing in Theorem 1.5, when applied to the 
Riccati equation (at a fixed Z E JK instead of 00), takes the form 

(2.4) Bz = PA)lx+ (Z) ):KJ - JK. 

Lemma 2.5. If S = JV (KeM, then. 

U = {Z E JV I Bz: JK - JK is not invertible} 

has measure zero in K. 

The proof of this lemma is rather long and technical and is presented in the 
appendix. However, it has its own interest, and includes an explicit construction of 
the spaces JK and M. 

Proof of Theorem 2.4. We apply Theorem 1.5, with some natural changes of nota- 
tion. Let X = Xi-X+ and X = X-X+. We are to show that there is a 4%0 such 
that B40 is invertible and, if JK = span { >o} @ JK1 and Po is the projection on 4)0 
along J1 G M, then there is an i such that Xi E )V (po, Oo, r0o) where 

(2.5) )(po,0o,)0=O{X 0 ? < 11XII < PO, IIPMXII < 00IIPAjvX,I 

I(.)(PA - PO)-k ?III IP I }. 

First, Theorem 1.2 shows that by choosing Xo so that A - DXo is stable there 
is an i1 such that 0 < lIXi2I < po for all i > i1. Then, since the convergence of the 
Newton sequence is not quadratic it follows from Corollary 2.3 that IIP Xi2l <- 

Oo PgXXi2 for some i2 > i1. Note that PgXi2 0 0, since otherwise we would have 
Xi2 = 0. 

Finally, if we choose 41o = PXXi2, then the last inequality of (2.5) is trivially 
satisfied for Xi2, but B40 may not be invertible. However, when r7o is given, it 
follows from Lemma 2.5 that a 4)0 can be chosen arbitrarily close to PgX 2 in such 
a way that B4O is invertible and Xi2 E WV (po, 00, rio). Now apply Theorem 1.5. O 

In H,,-control problems, we will indeed encounter algebraic Riccati equations 
where A - DX+ has eigenvalues on the imaginary axis (see [15], for example). The 
direct sum condition S = JV eM is usually satisfied there. On the other hand, it is 
always possible to find examples where the eigenvalues on the imaginary axis have 
elementary divisors of arbitrary degree. It suffices to consider (1.1) with 

(2.6) 0 A A= 0) 

For X = (xij) with xlj Cn (the binomial coefficients), all the eigenvalues of 
A - DX are -1. Thus (A, D) is stabilizable. We also have X+ = 0 (0 is an almost 
stabilizing solution, and thus maximal), and A n is the only elementary divisor of 
A - DX+. Numerical experiments suggest that the Newton sequence converges 
to 0 linearly with common ratio 2-1/n* When n = 2, we can exhibit the linear 
convergence with common ratio 1/v'- by the following example. 
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Example 2.1. Consider the Riccati equation (1.1) with D, A, C given by (2.6) 
and n = 2. For Newton's method, the symmetric matrices Xk+1 = (xkjl) and 
Xk - (xA) are now related by 

1 k 1 x 2 k 
_ k_ 

2 
k+1 k l _ k+1 1 k k+1 _ X 

__12_ 
X11 211?2kv X12 - 121 X22 2 xk 

2 2 xii 2 2 ~~~~~~~~~~11 

We choose xl?1 = vs ? 1)c, x12 = c for any c > 0, and x22 can be arbitrary. 
Then A - DXo is stable, and we find that for k = 1, 2, ... 

(j) f 12 C()kC X22 (2$ )k VC2 

Thus limkO, |lXk+l? l/lXkll = 1/v for any matrix norm. 

The role of the eigenvalues of A - DX+ on the imaginary axis is clearly critical. 
Information about these eigenvalues can also be obtained from the Hamiltonian 
matrix 

H= (C AT ) 

associated with the Riccati equation (1.1). Thus: 

Theorem 2.6. The complex number AZ is an eigenvalue of A - DX+ on the imagi- 
nary axis if and only if A is an eigenvalue of H on-the imaginary axis. Moreover, the 
partial multiplicities (i.e. the degrees of elementary divisors) of A as an eigenvalue 
of H are twice the partial multiplicities of A as an eigenvalue of A - DX+. 

Proof. This is an immediate consequence of [14, Theorem 7.3.1], with some changes 
in notation. The condition (7.3.1) in that theorem is satisfied because (A, D) is 
stabilizable. D 

3. A MODIFIED NEWTON METHOD 

The Newton iteration can be used to find the maximal solution of (1.1) when 
the Hamiltonian matrix has eigenvalues on the imaginary axis, while most other 
algorithms are not applicable in this case (see [16]). However, the convergence of the 
Newton sequence in this case is usually linear although, as Theorem 2.2 suggests, 
we have not excluded the possibility of quadratic convergence. Since the Newton 
iteration is an expensive procedure, we cannot be satisfied with linear convergence 
alone. 

For the general case described in Section 1, much work has been done on modi- 
fications of the Newton iteration with a view to accelerating convergence when the 
Jacobian is not invertible at the solution. See, for example, [5], [7] and [12]. The 
modified methods as described in [5] and [7] are, however, not applicable for the 
Riccati equations. Motivated by consideration of quadratic problems, Kelley and 
Suresh [12] proposed other modified methods which could be applied to the Riccati 
equations. Again, the initial guess must be in a special region of the form (1.6) 
in order that their modified methods are well-defined and give fast convergence. 
When we apply the Newton iteration to find the maximal symmetric solution of 
(1.1), we start with a symmetric matrix Xo for which A - DXo is stable. It is not 
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clear whether and when the iterate Xk will fall into that special region. We there- 
fore take a different approach. We are not going to recover quadratic convergence. 
Instead we will add a simple modification step to the Newton iteration so that the 
required accuracy can be achieved at an early stage. The following simple result is 
very instructive. Note statement 2, especially, and the possibility that it presents 
for stepping directly to the solution X+. 

Theorem 3.1. In the setting of Theorems 1.1 and 1.2, and under the condition 
that Xk -X+ E , we have 

1. Xk+l -X+ = (Xk -X+). 
2. X+ = Xk - 2(RZk>) (Xk). 

Proof. By Taylor's Theorem, 

7Xk (Xk - X+) = K/X+ (Xk - X+) + 74X+ (Xk - X+, Xk -X+e)- 

Since 74(X+) = 0 and 74x+ (Xk - X+) = 0, we may also write 

Rxk (Xk - X+) = 2{' (X+) + R'x+ (Xk -X+?) ? -)R+ (Xk -X+, Xk-X+?)} 

= 2)(Xk). 

The second part of the theorem follows immediately. The first part follows easily 
from (1.4) and the second part. O 

We remark that similar conclusions can be reached for any map F from a Banach 
space into itself, for which F" is constant. 

Example 3.1. It is instructive to revisit Example 9.2.1 of [14] at this stage. Let 

D= ( 0 , A 0 -1 ), C (1 2) 
It is easily verified that there is a unique solution of 74(X) = 0, namely, 

0O 1 
X+ ? (1 1/2) 

Thus, 

A-DX+=( ( _) 

and is not stable. 
If Newton iterations are started with XO = 8) (when A - DXo -I and is 

stable) then it can be proved by induction that, for n 1, 2,... 

x ( 2Ln 1-2-nr 
Xn = 1--n 2 

1 

Consequently, for n 1, 2,... 

3.1) ||~~~IXn+1 - X+11 I 
(3.1) 2 

It can be seen that, in this case 
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so that S = JV (-K M. Furthermore, X+ E M and, for n 1, 2,... 

Xn - X+ = 2-n( 1 )- 

Fortuitously, XO is chosen in such a way that Xn - X+ E J for n 1, 2, .... Thus, 
Theorem 3.1 applies and (3.1) holds. Furthermore, it is clear that, by applying the 
modified Newton step at any n > 1, the exact solution X+ is obtained. 

The direct sum condition S = JV @ M is not required in Theorem 3.1. However, 
the condition Xk -X+ E JK can hardly be satisfied without the direct sum condition. 
In fact, for the Riccati equation considered in Example 2.1, Xk -X+ E JK implies the 
non-invertibility of R' Thus for this simple example, starting with a symmetric 
matrix XO for which A - DXo is stable, we can never have Xk -X+ E . 

When the direct sum condition is satisfied and the convergence of the New- 
ton sequence {Xk} is not quadratic, we have at some (hopefully early) stage 
IIPM(Xk - X+)jI <? IIP(Xk - X+)jI (cf. Theorem 2.4). A very good approxi- 
mate solution could then be obtained by applying the modification step in Theorem 
3.1(2). More precisely, we have the following result. 

Theorem 3.2. Assume S = K D M and II (1 >lII < cjjXIi - X+11-1 for all 
i > 1. If for some k, IIPM(Xk-X+)jj < CIIPg (Xk-X+)jj with c sufficiently small, 
and Yk+l = Xk - 2( k)Y117Z(Xk), then IIYk+ - X+ 11 < cc for some constant c 
independent of c and k. 

Proof. Let Xk = X+ + PA(Xk - X+). We have 

IlXk - Xkk = IIPM (Xk - X+) | < CIIPg(Xk - X+) | < C2EIIXk X+ 11, 

and 

||I1 - (4X 
k) RI 

|<1 4k)1 
klx Xk 

< C, - Xk-X+ I 1C3 11Xk - Xk | 

< C46- 

If C4C < 2, we know from the Banach lemma that Rx is invertible and 2 ~~~~~~~~~Xk 

I(Xk )X J 2l1< ((k) ?| < C5 flXk -X+ X| 

Since XkX+ - J, we have by Theorem 3.1 

X+ = Xk-2(JZ < R(Xk) 

Hence 

IIYk+l -X+11 < ?II-X Xk+kII 2II(zX )1k ( - (4Xh> (Xk)II. 

On writing 

( k k) G(Xk) - (RXJk) R(Xk) 

XJ(J )1 {(JRk'k kRXk)(RXk) (?1(X) - 14(X+)) + JZ(kk) - JZ(Xk)}, 

we obtain easily IIYk+1 -X+ 11 < c. 

The following algorithm is suggested by the results of this section. 
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Algorithm 3.3. Modified Newton method for algebraic Riccati equations: 
1. Choose a symmetric matrix Xo for which A - DXo is stable. 
2. For k=0,1,... do: 

Solve Z'Xk (H) = JZ(Xk); 
Compute Xk+1 = Xk - 2H; 
If Il1R(Xk+l) I < c, stop; 
Otherwise, compute Xk+1 = Xk - H; 
If fl1R(Xk+l)ll < c, stop. 

In the above algorithm, 11-11 is an easily computable matrix norm (e.g. 1-norm) 
and e is a prescribed accuracy. The equation JZ>k (H) = JZ(Xk) can be rewritten as 
a Lyapunov equation (A-DXk)TH+H(A-DXk) = -JZ(Xk), which can be solved 
efficiently by the algorithms described in [1] and [9]. In Algorithm 3.3, all iterates 
except the last one are identical to those produced by the original Newton method. 
Thus all good properties of the Newton method are retained. When A - DX+ 
has eigenvalues on the imaginary axis, the last iterate is usually produced by the 
modified step. Algorithm 3.3 needs roughly 10% more computational work per 
iteration, since we systematically perform one additional Riccati function evaluation 
with a view to achieving the required accuracy in the modified step as early as 
possible. 

4. NUMERICAL EXAMPLES 

In this section we present some numerical examples to illustrate the effectiveness 
of the modified Newton step in Algorithm 3.3. 

Example 4.1. Consider the algebraic Riccati equation (1.1) with n = 2 and 

A (j 6 -1), D=12, C=62I2 

(cf. Example 10 of [3]). The maximal solution X+ = (xij) is given by 

Xll = X22 = 2(2(6 + 1) + V2(c + 1)2+ 2 + vc), 
Xii 

X12 = X21 = 
-x 

(? 1) 

For c = 0, the pair (A, D) is stabilizable, and 

A -DX+= _M _),J=(_,a 
-a 

aR} 

Observe that a(A - DX+) = {0, -2}. Starting with 

(18 16 
16 18,1 

we perform 8 steps of the ordinary Newton iteration and then perform a modifi- 
cation step. The results are recorded in Table 1. As usual we let Xk = Xk -X+ 
and write Xk k (xk). For this problem the convergence of the Newton iteration 
is linear with common ratio 2 (cf. Theorem 2.4). After 8 Newton iterations, X8 
is still not very close to X+. However, X8 - X+ is very close to an element in 
JV. A modification step then produces a very accurate approximate solution (cf. 
Theorem 3.2). 
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TABLE 1. Performance of Algorithm 3.3 for Example 4.1 

k jk = 22 klXkk k 11 1k2 = 21 22 | |Xkl|l|l 

0 0.1600D + 02 0.1400D + 02 0.1600D + 02 0.3000D + 02 
1 0.7531D + 01 0.6531D + 01 0.7531D + 01 0.1406D + 02 
2 0.3328D + 01 0.2828D + 01 0.3328D + 01 0.6154D + 01 

3 0.1287D + 01 0.1037D + 01 0.1287D + 01 0.2323D + 01 
4 0.3746D + 00 0.2496D + 00 0.3746D + 00 0.6242D + 00 
5 0.6837D - 01 0.5867D - 02 0.6837D - 01 0.7423D - 01 
6 0.1629D-01 -0.1496D-01 0.1629D-01 0.3125D-01 
7 0.7813D-02 -0.7812D-02 0.7813D-02 0.1562D-01 
8 0.3906D - 02 -0.3906D - 02 0.3906D - 02 0.7812D - 02 
9 -0.3531D - 13 -0.1354D - 13 -0.3575D - 13 0.4929D - 13 

When e is a small positive number, X+ is a stabilizing solution. According to 
Theorem 1.4, the Newton sequence {Xk} converges to X+ quadratically. However, 
the constant c in Theorem 1.4 will be very large for very small e. Thus the quadratic 
convergence could be exhibited only after Xk gets very close to the solution. On the 
other hand, as Xk gets close to the solution, the corresponding Lyapunov equation 
will be ill-conditioned. As a result, quadratic convergence can hardly be realized. 
For example, take e = 10-8 and X0 as before. If we perform 8 Newton iterations 
and then perform a modification step, we get flX9 Ii = 0.4142D - 08. Without the 
modification step, the error IIXkll1 for the Newton iterate decreases monotonically 
untill the 26th iteration with jjX26jj1 = 0.3738D - 07. 

Example 4.2. Consider the algebraic Riccati equation (1.1) with n = 2 and 
A= 

-,4 2-,Ii/ 4c-11 2c-5) 
A (= 4 2 - D= C= 2c-5 2c-2 

(cf. Example 11 of [3]). The maximal solution is 

X+ 
2 

11J 

For e = 0, the pair (A, D) is stabilizable. And we have 

( 01 ) {( 0 a e) R} 

and observe that a(A - DX+) = {-i, i}. 
Starting with 

X= 20 15 
? 15 25 ' 

we perform 8 steps of the ordinary Newton iteration and then perform a modifica- 
tion step. The results are recorded in Table 2. The situation for this example is 
very similar to that for Example 4.1. 
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TABLE 2. Performance of Algorithm 3.3 for Example 4.2 

k =11 12 21 22 - - 

0 0.1800D + 02 0.1400D + 02 0.2400D + 02 0.3800D + 02 
1 0.8788D + 01 0.7445D + 01 0.1136D + 02 0.1880D + 02 
2 0.5173D + 01 0.3136D + 01 0.6099D + 01 0.9235D + 01 
3 0.3230D + 01 0.1051D + 01 0.3452D + 01 0.4504D + 01 
4 0.1988D + 01 0.1997D + 00 0.2008D + 01 0.2208D + 01 
5 0.1088D + 01 0.1090D-01 0.1088D + 01 0.1099D + 01 
6 0.5493D + 00 0.5518D-04 0.5493D + 00 0.5494D + 00 
7 0.2747D + 00 0.2772D - 08 0.2747D + 00 0.2747D + 00 
8 0.1373D + 00 -0.4441D-15 0.1373D + 00 0.1373D + 00 
9 -0.3997D - 14 0.8882D - 15 -0.5218D - 14 0.6106D - 14 

TABLE 3. Performance of Algorithm 3.3 for Example 4.3 

k lIXkkIll I Hl (Xk) 11 1 
0 0.1000D + 01 0.5000D + 01 
1 0.6245D + 00 0.1398D + 01 
2 0.2-783D + 00 0.3203D + 00 
3 0.1378D + 00 0.7232D-01 
4 0.6503D-01 0.1696D-01 
5 0.3167D - 01 0.4030D - 02 
6 0.1575D-01 0.9859D-03 
7 0.7872D - 02 0.2459D - 03 
8 0.3936D - 02 0.6147D - 04 
9 0.1968D-02 0.1537D-04 

10 0.5215D - 10 0.5207D - 10 

For c = 10-10 and the same initial guess, we perform 8 steps of Newton iteration 
and then perform a modification step. We get jjXg9j1 =.lOOOD - 09. For the 
Newton iteration, the error decreases monotonically untill the 31st iteration with 

II X31 I = 0.3663D - 08. 

Example 4.3. We consider the algebraic Riccati equation (1.1) with n = 8 and a 
block-diagonal matrix A with 2 x 2 blocks: 

A=diag(0,(0 ?1 )'(2 n)( -1 )) 
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It is readily seen that X+ = 0 so that c(A - DX+) = {-1, 0, ?i, ?2i} and the 
purely imaginary eigenvalues have linear elementary divisors. 

We apply Algorithm 3.3 with XO = I and c = 10-10. The results are recorded in 
Table 3. The first 9 steps are ordinary Newton iterations. The convergence of the 
Newton iteration is linear with common ratio 1 (cf. Theorem 2.4). And by (2.3) 
we have IIZR(Xk)lI < cIIXk112 in this case, as verified by the numerical results. The 
last step is a modification step, which improves the accuracy dramatically. 

We carried out many other numerical experiments. The results reported above 
are typical. In these experiments the convergence of the Newton method is always 
observed to be linear with common ratio - whenever all elementary divisors of 2 
A - DX+ are linear. 

APPENDIX 

This appendix is devoted to a sequence of results leading to a proof of Lemma 
2.5. First, explicit representations for the subspaces AV = Ker 1Z' and M - 

Im Rx+ are obtained. It is assumed throughout this appendix that the hypotheses 
of Theorems 1.1 and 2.1 hold. 

It will be convenient to introduce the matrices 

E 0=( 1 E2= -1 o 0 E3= ( -1 ) 4' 
= 

1 ? 

and recall the real Jordan reduction used in the proof of Theorem 2.1: 

P-l(A -DX+)P= J = diag (G,,... ., Gp), 

and let Gj have size rj x rj, j = 1,2,.. ,p. 
Let Sk be the linear space of real symmetric matrices of order k. For 2 < j < 

p - 1, define subspaces Sj, j C Sri by 

S3 = {X 0 E1 + Y 0 E2 X symmetric, Y anti-symmetric; both have order 2i }; 
2 

T = {X 0E3 + Y 01 E4 X, Y symmetric of order 2i}. 
2 

Here, 0 denotes the Kronecker product (see p. 97 of [14], for example). Note that 
dim Sj 1= r and dim Tj = lr? + lrj for 2 < j < p-1. Finally define 

.Jf = {N =diag (N, ... I NP) I Ni ElRrixri,I1 < i < P; 

NT = N1, NP = -, Ni E Si, 2 < i < p- 1}, 

MJ j {M = (Mij)I Mj e Rrixri, MT = M , < ij < P; 

M11 = 0, Mij E T, 2 < i < p-1}. 

Lemma A.1. If all purely imaginary eigenvalues of A - DX+ have linear elemen- 
tary divisors, then 

A(= {p-TNP-1 IN eAj}, 

M = {p-TMp-l I M E Mj}. 
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Proof. The statement can be verified by block matrix multiplications and repeated 
use of Theorem 1.3. 0 

Lemma A.2. For every complex number A with non-negative real part, 

rank(AI - J P-lDP-T) = n. 

Proof. Since (A, D) is stabilizable, there is a real X such that A - DX is stable. 
Now 

J - P DPTPT (X - X+)P - P-1(A - DX+)P - P-1(DX - DX?)P 
= P-1(A - DX)P, 

which is stable. Thus (J, P-lDP-T) is a stabilizable pair. The result now follows 
from Theorem 4.5.6(a) of [14]. 12 

Lemma A.3. Let W be a Hermitian positive semidefinite matrix. If the determi- 
nant of a principal submatrix of W is zero, then the rows of W containing this 
submatrix must be linearly dependent. 

Proof. Let W = (wij)inj=,. We may assume without loss of generality that the prin- 
cipal submatrix is W (wij) = (T ... T)T(r <n) and that cti = c2ar?? * 
crcar for some constants c2, . . ., cr. Let E(i, j(k)) be the elementary matrix obtained 
from I by adding k times row j to row i. Let U = E(1, r(-cr)) ... E(1, 2(-C2)). 
Then UWUH is Hermitian positive semidefinite and has zero in the (1, 1) position. 
Hence the first row of UWUH is zero. This means that /31 = c2/32 + *-- + cr3r, 
where 13, . .., /3r are the first r rows of W. g 

Now consider the map 13z : W -+ iV of (2.4). By Lemma A.1, we can write 
y = p-Tyjp-l Z = p-TZjP-1 with YJ, ZJ E fifi. Therefore 

B3z(Y) = PAg(ZDY + YDZ) 
- PTPArJ(ZjP 1DPTYj + YiP-DPTZ )P-1 

where PA,J is the projection onto AJj parallel to Mj. Let Zj = diag (Z?, ... , p), 
YJ = diag (Yl, ... , YP) and diag (D,... ., Dp) be the block diagonal of P-DPT. 
Let Si = Sri. We have further 

(A.1) ?3Z(y) = P-Tdiag (Yz Z (Y1), YF2 (Y2),. * Z (V>1), O)P 

where we define linear transformations Fz : Si -i Si by 

.Fz, (Y1 ) = Z, DI Y, + Y, DI Z1, 

TFz (Yi) = Ps,(ZiDiYi + YiDiZi), 2 < i < p-1, 

with Ps, being the projection onto Si parallel to Ti. 
Fori=1,2,... ,p-1,let 

i= {Zi E Si I Yzi: Si - Si is not invertible}. 

Lemma A.4. The set tf has measure zero in Sl. 

Proof. For W, E SI, we can rewrite Z1D1Y1 + Y1DIZ1 = W1 as 

(I?(& (ZiDI) + (Z1Di) ?I)vecYi = vecW, 

(see [14, p. 99]). Thus 

Z1 c {Z1 E SI I det (I ? (ZiD1) + (ZiDi) ? I) = O} 
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Since Z1 E Srl, the determinant is an algebraic polynomial in r1 (r, + 1)/2 variables. 
The set Ul has measure zero in S1 unless 

(A.2) det (I? (Z1D1) + (Z1D1) 0 I) 0. 

If (A.2) is true, we have in particular det (I 0 D 2 + D 2 0 I) = 0. Thus 0 is an 
eigenvalue of the matrix I 0 D1 + D 2 0 I. We can then find eigenvalues Ai, Aj of 
D1 such that A? + A2 = 0 (see [14, Theorem 5.1.1]). Hence 0 is an eigenvalue of 71 3 

D1 and det D1 = 0. By Lemma A.3, the first r1 rows of P-lDP-T are linearly 
dependent. Thus rank (-J Pl1DP-T) < n, which contradicts Lemma A.2. EZ 

Lemma A.5. For k = 2,3, .. ,p - 1, the set Uk has measure zero in Sk* 

Proof. We will first find a more explicit expression for YZk(Yk). By Lemma A. 1, 
we can write 

(A.3) Yk= Ms 0 El + Ma 0 E2, Zk= Ns OEl + Na O E2, 

where Ms and Ns are symmetric; Ma and Na are anti-symmetric. Let 

Dk = (D )rk/2 with Dij = ( ci d3 ) k 2i t,3=1 d7 d&j 

QS (qiS )ik/2 with q= 
- (dij + di3), 

Qa iji,j;1 qtj 2 -d 

Qa = (qij ) ,kj=1 with q- (dij-dij) 

Then 

(A.4) Dk = Qs O El + Qa O E2 + Rs OE3 + Ts O E4, 

where Q, R, and T, are symmetric; Qa is anti-symmetric. Using (A.3) and (A.4) 
to expand ZkDkYk + YkDkZk, we finally get 

;Zk (Yk) = (NsQsMs + MsQsNs - NaQaMs - MsQaNa 
- NsQaMa - MaQaNs - NaQsMa - MaQsNa) 0 El 

+(NsQaMs + MsQaNs + NaQsMs + MsQsNa 

+ NsQsMa + MaQsNs - NaQaMa - MaQaNa) (0 E2. 

For Wk .E Sk, we write Wk = Ls 0D E1 + La 03 E2 with Ls symmetric and La 
anti-symmetric. Thus .FZk (Yk) = Wk if and only if 

(A.5) NsQsMs + MsQsNs - NaQaMs - NsQaNa 

- NsQaMa - MaQaNs - NaQsMa - MaQsNa = Ls 

and 

(A.6) 
NsQaMs + MsQaNs + NaQsMs + MsQsNa 

+ NsQsMa + MaQsNs - NaQaMa - MaQaNa = La. 

The above two equalities produce a system of linear equations. The determinant 
of the coefficient matrix, det (Ns, Na), is an algebraic polynomial in (,k )2 variables 
(k (k + 1) variables from Ns and 'k 

(k - 1) variables from Na). Now Uk = {Zk E 

Sk I det (NsI Na) = 0}. The set Uk has measure zero in Sk unless det (Ns, Na) 0 . 
The equalities (A.5) and (A.6) can be combined into a neat complex form 

(Ns + iNa)(Qs + iQa)(Ms + iMa) + (Ms + iMa)(Qs + iQa)(Ns + iNa) 
= Ls + iLa. 
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If det (Ns, Na)- 0, we have in particular det (Q,, Qa) = 0. Thus 

(Qs + iQa )2 (Ms + iMa) + (Ms + iMa) (Qs + iQa )2 = 0 

has a nonzero solution Ms + iMa, which implies that 

det (I 0 (Qs + iQa)2 + (Qs + iQa)2 01) 0= . 

Since Q5 + iQa is Hermitian, its eigenvalues are all real. It follows as in the proof 
of Lemma A.4 that det (Qs + iQa) = 0 

To complete the proof, we need to show det (Q5 + iQa) $? 0. By Lemma A.2 we 
have rank (akiI - J P-lDP-T) = n. Let tk = rl + * * + rk-l and 

U = E(tk + rk -1,(tk + rk)(--i)) 

* E(tk + 3, (tk + 4)(-i))E(tk + 1, (tk + 2)(-i)). 

Then 

rank (U(akiI - J) UPl'DP-TUH) n. 

Since the (Sk + I)th, (Sk + 3)th,... , (Sk + rk - I)th rows of the matrix U(akiI - J) 
are all zero, the corresponding rows of the Hermitian positive semidefinite ma- 
trix UP-lDP-TUH must be linearly independent. By Lemma A.3, the principal 
submatrix (of order rk/2) of UP-lDP-TUH contained in these rows must have a 
nonzero determinant. The principal submatrix turns out to be precisely 2(Qs+iQa). 
Therefore det (Q5 + iQa) $:0 ? E 

Proof of Lemma 2.5. From (A.1) we see that Bz is invertible if and only if .FZ% is 
invertible for each i. Thus 

p-1 

U= UVi, 
i=1 

where 

Vi = p-Tdiag(Xl,. ... jXp_l,O)P- lx {X E Sxi, E Sj,j:~ 4?i} 

By Lemmas A.4 and A.5, each Vi has measure zero in AV. Therefore U has measure 
zero in K. g 

REFERENCES 

1. R. H. Bartels and C. W. Stewart, Solution of the matrix equation AX + XB = C, Comm. 
ACM 15 (1972), 820-826. 

2. P. Benner and R. Byers, An exact line search method for solving generalized continuous-time 
algebraic Riccati equations, IEEE Trans. Autom. Control (to appear). 

3. P. Benner, A. J. Laub and V. Mehrmann, A collection of benchmark examples for the numer- 
ical solution of algebraic Riccati equations I: continuous-time case, Technical Report SPC 
95-22, Fakultait fur Mathematik, Technische Universitait Chemnitz-Zwickau, FRG, 1995. 

4. W. A. Coppel, Matrix quadratic equations, Bull. Austral. Math. Soc. 10 (1974), 377-401. MR 
51:3623 

5. D. W. Decker, H. B. Keller and C. T. Kelley, Convergence rates for Newton's method at 
singular points, SIAM J. Numer. Anal. 20 (1983), 296-314. MR 84d:65041 

6. D. W. Decker and C. T. Kelley, Newton's Method at singular points I, SIAM J. Numer. Anal. 
17 (1980), 66-70. MR 81k:65065a 

7. , Convergence acceleration for Newton's method at singular points, SIAM J. Numer. 
Anal. 19 (1982), 219-229. MR 83e:65090 

8. I. Gohberg, P. Lancaster and L. Rodman, On Hermitian solutions of the symmetric algebraic 
Riccati equation, SIAM J. Control Optimization 24 (1986), 1323-1334. MR 88f:93041 



NEWTON'S METHOD FOR ALGEBRAIC RICCATI EQUATIONS 1105 

9. G. H. Golub, S. Nash and C. Van Loan, A Hessenberg-Schur method for the problem AX + 
XB = C, IEEE Trans. Autom. Control 24 (1979), 909-913. MR 81a:65046 

10. L. V. Kantorovich and G. P. Akilov, Functional analysis in normed spaces, Pergamon, New 
York, 1964. MR 35:4699 

11. C. T. Kelley, A Shamanskii-like acceleration scheme for nonlinear equations at singular roots, 
Math. Comp. 47 (1986), 609-623. MR 87m:65100 

12. C. T. Kelley and R. Suresh, A new acceleration method for Newton's method at singular 
points, SIAM J. Numer. Anal. 20 (1983), 1001-1009. MR 85c:65063 

13. D. L. Kleinman, On an iterative technique for Riccati equation computations, IEEE Trans. 
Autom. Control 13 (1968), 114-115. 

14. P. Lancaster and L. Rodman, Algebraic Riccati equations, Oxford University Press, 1995. MR 
97b:93003 

15. A. Linnemann, Numerische methoden fur lineare regelungssysteme, BI Wissenschafts Verlag, 
Mannheim, 1993. MR 94g:93001 

16. V. L. Mehrmann, The autonomous linear quadratic control problem, Lecture Notes in Control 
and Information Sciences, Vol. 163, Springer Verlag, Berlin, 1991. MR 93d:93004 

17. J. M. Ortega and W. C. Rheinboldt, Iterative solutions of nonlinear equations in several 
variables, Academic Press, New York, 1970. MR 42:8686 

18. G. W. Reddien, On Newton's method for singular problems, SIAM J. Numer. Anal. 15 (1978), 
993-996. MR 80b:65064 

19. V. Sima, An efficient Schur method to solve the stabilizing problem, IEEE Trans. Autom. 
Control 26 (1981), 724-725. MR 82j:93032 

20. H. K. Wimmer, Monotonicity of maximal solutions of algebraic Riccati equations, Syst. Con- 
trol Lett. 5 (1985), 317-319. MR 86f:93083 

DEPARTMENT OF MATHEMATICS AND STATISTICS, UNIVERSITY OF CALGARY, CALGARY, AL- 

BERTA, CANADA T2N 1N4 
E-mail address: guolmath. ucalgary. ca 

E-mail address: lancastelmath. ucalgary. ca 


